

FERTILITY AND REPRODUCTIVE HEALTH Clinician, Researcher, Author and Educator

FOUNDATIONAL FERTILITY

Male fertility

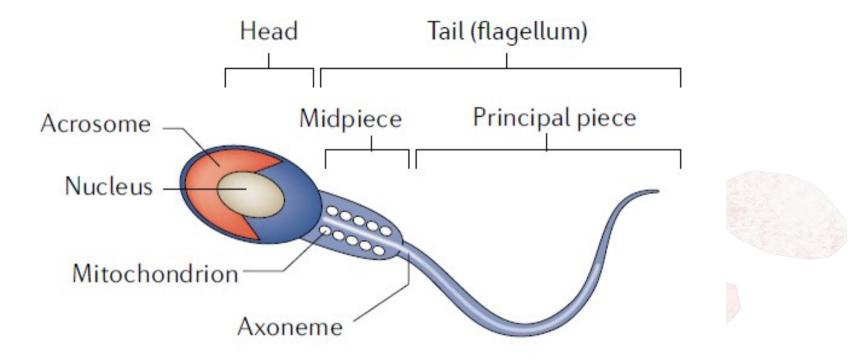
www.naturalhealthfertility.com

Subjective	Possessive Adjective	Objective	Possessive Pronoun	Reflexive
he	him	his	his	himself
she	her	her	hers	herself
they	them	their	theirs	themself
xie	hir ("here")	hir	hirs	hirself
yo	уо	yos	yos	yoself
ze	zir	zir	zirs	zirself
ve	vis	ver	ver	verself
со	со	cos	cos	coself
en	en	ens	ens	enself
ey	em	eir	eirs	emself

DISCLAIM ER

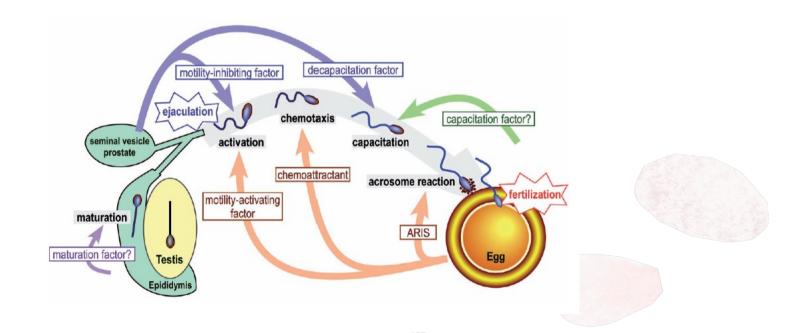
DISCLOSURES

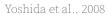
- Director, The Natural Health and Fertility Centre
- PhD Candidate UNSW, Women's and Children's Health, Faculty of Medicine
- Clinical Advisory Board Invivo Healthcare
- Scientific Advisory Board MINDD Foundation
- Scientific Advisory Board MothersBabies
- KOL Kaneka (Fertility and Ubiquinol)
- Panel and Board member Association of Naturopathic Practitioners (UK)
- Patron College of Naturopathic Medicine (CNM)
- Lecturer Various
- Product advisor Various



OUTLINE

- The components of healthy male fertility
- Appropriate assessments and interpretation
- Influencing male fertility treatment strategies, prescriptions, recommendations




THE HUMBLE SPERMATOZOA

Dai et al., 2021

THE JOURNEY OF A SPERMATOZOA

DISRUPTION OF

CDEDMATOCENIECIC Hypogonadotropic **TESTICULAR CAUSES POST-TESTICULAR CAUSES Pituitary Diseases** Hypogonadism → Disorders of sperm/motility Obstruction < Isolated LH or FSH Systemic diseases Testicular injury Varicocele IHH (Kallmann S.) deficiency ICS (Kartagener) CBAVD idi **PRE-TESTICULAR** Torsion Cystic Fibrosis Liver failure Cryptorchidism Maturation defects !X \ CHH CAUSES Alcoholism Trauma Craniopharyngioma ➤ Congenital blockage Immune infertility CAH Noonan syndrome CUAVD Fever Infections Pituitary Tumors Gonadotoxins Young's syndrome Vanishing testis syndrome Oncological diseases Chlamydia trachomatis Coital disorders IEO Infiltrative diseases Radiation Orchitis APKD Neisseria gonorrhoeae Myotonic dystrophy Drugs-Lifestyle-Traumatic Brain **Erectile** BEDO Toxicants Mycoplasma spp Injury Hematological diseases dysfunction 46.XX testicular DSD External compression → Sickle Cell Disease Ureaplasma spp Critical and Chronic Ejaculatory Infections B-thalassemia SCO syndrome diseases disorders 47.XYY Syndrome Treponema pallidum Trauma Chr. Gastrointest, Diseas. Viral infections Acquired blockages Klinefelter S. (47,XXY) Crohn's disease Idiopathic latrogenic injuries Ulcerative colitis Y chr. microdeletions Celiac disease? Infections HSV HBV Vasectomy HCV Coital Disorders HCMV Sexual Dysfunction Protozoal infection Hypospadias Trichomoniasis <

ASSESSMENTS

ASSESSING THE MALE PATIENT

- Semen analysis
 - Time of collection
 - Volume
 - pH
 - Agglutination
 - Viscosity
 - Count
 - Morphology
 - Motility progressive %, motile vs immotile
 - DNA fragmentation
 - Sperm antibodies
 - Semen culture

TYPES OF ANALYSES

	NALYSIS REPO	RT Sample: Seminal	nuiu e 100iii	temperature	He	rason i	or Test: Outsi	ue patien
Gross exa	imination		Days	of Abstinence: 3	Vi	tality:	(RR >58%
Volume:	2.7 ml	(RR ≥1.5 ml)	Viscosity:	Severely elevated	Leuko	cytes:	< 1M/ml (RR:	<1M/ml)
pH:	8.5	(RR ≥7.2)	Liquefaction:	Complete	Sample con	plete	Yes	
Microsco	oic Examination	Collected by: Masturb	oation	Accredited for compliance with Ni	PAAC standards and ISO 1518	9. NATA/RCI	PA Accredited Laborator	ry Number 19491
Concentrat	on: 1.4 mill/ml	(RR:15 mill/ml)	Total Count:	3.8 million (>39)	Date of test	Conc	. Motile	Norms
Motile	ml: 0.36 mill/m	(26% motile)	Total Motile:	0.988 million	18 Aug 22	0.3	3 <0.01	
		(== /= ////////////////////////////////		0.000 111111011	16 Jun 22		4 0.64	
Motility G	rading (HH: A+B	+C ≥40% and A+B ≥32%)	Morphology*		21 Jul 21	2.	2 0.11	
	B: 24% Progr	essive	Normal forms	(RR ≥4%)	Scientist 50	, ·		
Grade A+				, , , ,	1			
Grade A+ Grade C:	2% Non pr	ogressive		with poor IVF outcome				

Reference ranges as per WHO laboratory manual, Fifth Edition,2010. *From 1/9/2010

Direct ASAB Result		Previous IgA		Other IgG		
			Date	Direct IgA	Date	Indirect IgG
Result	Binding*	Region	25 Jan 17			
			17 Mar 17			
ASAB Co	mments	* Biological Reference Range <10%	27 Jun 17		12 Jun 19	
			28 Aug 17		31 May 18	
			1 Sep 17		5 Apr 17	
			12 Jun 19		16 Dec 16	Negative
			21 Nov 19			

Direct MAR test is performed when sperm motility is normal. Reference ranges as per manufacturers guidelines.

Comments

- · An oligoasthenozoospermic sample.
- Severely viscous specimen. Specimen required resuspension by using a 1ml syringe and 18 inch gauge needle.
 Accurate sperm morphology count NOT performed due to insufficient sperm concentration cutoff. Semen samples should have a total concentration of >5 million/ml before sperm morphology can be performed.
- · Accurate sperm vitality count NOT performed due to insufficient sperm concentration cutoff. Semen samples should have a total concentration of >10 million/ml before sperm vitality can be performed.
- · Halosperm test result to follow.

.....

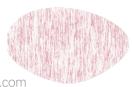
· Further investigations or clinical referral may be indicated.

Sample Provided: 07-Aug-2020 Abstinence Period (2-7 days): 3 day(s) abstinence Masturbation at lab Sample Produced by: Incomplete semen sample Specimen: Genea Andrology at 37 degrees Testing Performed at: 39 mins post ejaculation Sample Analysed: Reference Range: Patient Result: >= 1.5 3.7 ml Ejaculate Volume: Normal Sample Viscosity: Liquefaction: Complete Sperm Clumping: 5% aggregate only Normal Debris: Few Round Cells: > 7.2 Not required >= 15 150 million/ml Sperm Concentration >= 39 555.00 million/ejaculate Total Sperm Count: >= 32 Progressive Motility: 65% progressive >= 40 Total Motility: 72% motile >= 3 Progression Rating: Not required >= 58 Sperm Vitality: 18% normal forms >= 4 Normal Forms: Antisperm Antibodies < 50 0% lgG Isotypes: < 50 0% laA < 29 12% **Excellent DNA Integrity** DNA Fragmentation: < 15 Normal High Green Stain: SCITs2 + culture. 10% of sample not collection from the end of ejaculate. Semen Comments: analysis performed by SQA-Vision. Culture results to follow from DHM. CC: Dr Leah Hechtman (1/300 Pacific Highway, Crows Nest NSW 2065). Other Significant Findings:

© Leah Hechtman 2023

	Semen composition
Seminal plasma	Lipids Sugars >2500 proteins (enzymes, cytokines, chemokines, cell-cell signaling factors)
Seminal cells	Spermatozoa (>85% of seminal cells, with normally > 39 million per ejaculation)
	Exfoliated immature germ cells
	Exfoliated epithelial cells
	 Seminal leukocytes (normally < 1 million/ml, in a part coming from epididymis):
	50-60% granulocytes
	20-30% macrophages
	5% T lymphocytes
	Rare dendritic cells in individuals with chronic inflammation of the MGT

Le Tortorec et al., 2020

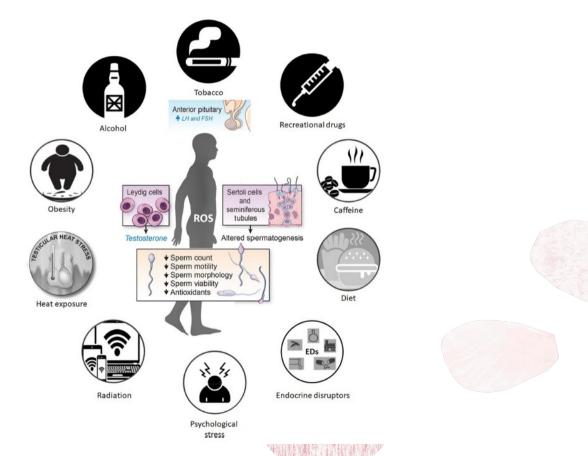

OTHER ASSESSMENTS

GENERAL

- FBC
- UEC/LFT
- Fasting lipids
- Full iron studies +/- HFE
- Vitamin D3
- T (free and bound), P4, FSH, LH, PRL, E2, DHEA-S
- TSH + as needed
- Fasting glucose, insulin, HbA1c, HOMA
- Full STI panel
- Infective screen EBV, CMV, HSV1/2, HHV6, Mycoplasma, Ureaplasma
- MSU

FUNCTIONAL

- Methylation profile
 - Fasting homocysteine
 - Active B12, red cell folate
 - SAM, SAH, SAM:SAH
 - THF, Folinic acid, L-5MTHF
- Red cell selenium
- Plasma zinc
- Serum copper
- Caeruloplasmin
- Seminal microbiome
- Others as indicated


AETIOLOGY

MULTIFACTORIAL AETIOLOGY

ALCOHOL AND FERTILITY

Impact of Alcohol	Animal Studies	Human Studies	
Effects on Reproductive Hormonal Regulation	Reduced levels of LH, FSH [67–72]. Reduced levels of testosterone [73–77]. Altered Leydig cell number and morphology [78].	Contradictory evidence in literature on levels of FSH, LH, and testosterone [79–83].	
Effects on Semen Quality	Reduced sperm concentration and motility [84–87]. Increased abnormal sperm morphology [84–87]. Defects in chromatin condensation [86,87].	Reduced sperm concentration [88–90]. Altered semen volume and increased abnormal sperm morphology [91–93]. Increased sperm DNA fragmentation and defects in chromatin condensation [89,90,94,95]. Moderate consumption associated with better semen volume and concentration [96].	
Effects on Gene Transcription, Genetic, and Epigenetic Regulation	Altered expression of RNA involved in sperm function [97,98]. Altered expression of proteins involved in apoptosis [99]. Aberrant gene acetylation of sperm DNA [100].	Altered expression of RNA involved in sperm function [101]. Aberrant gene methylation in sperm DNA [102,103].	
Transgenerational Effects	Low fetal and birth weight, and limited growth in offspring [101,104]. Nervous system anomalies in offspring [105,106]. Altered reproductive development of offspring [107].	Higher incidence of psychopathological disorders [108–110], congenital heart defects [111], cancer [112], and altered reproductive development [113] in the offspring.	

Finelli et al., 2021

ALCOHOL AND FERTILITY

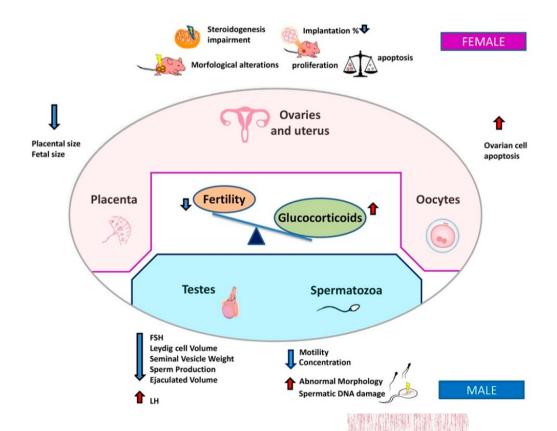
- · High levels of proinflammatory cytokines
- · Activation of inflammasome
- · Hepatic steatosis
- · Neuronal damage, atherosclerosis, and cardiomyopathy

Apoptosis

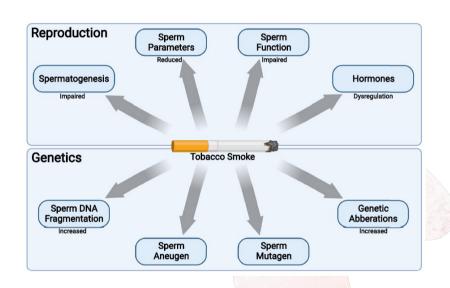
Oxidative stress

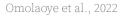
- · High levels of oxidative markers · Reduced antioxidant
- capacity

- Apoptosis
- · Mitochondrial damage
- · Lower expression of the anti-apoptotic Bcl-2
- · Higher expression of proapoptotic Bax


- · High rate of DNA strand breaks
- . DNA adducts, oxidized bases
- · Accelerated telomere shortening


SLEEP AND FERTILITY




www.naturalhealthfertility.com

TOBACCO AND FERTILITY

Lifestyle Factor	Semen Parameters	Endocrine Parameters	Proposed Mechanisms
Alcohol Consumption	Seminal leukocytes SDF Concentration Motility Viability Morphology	LH FSH Prolactin Estrogen Testosterone Progesterone	Impaired spermatogenesis and steroidogenesis Spermatogenic arrest Impaired Leydig cell Apoptosis Testicular atrophy and OS
Tobacco Consumption	Seminal leukocytes SDF Concentration Motility Viability Morphology	Testosterone	 Impaired spermatogenesis and steroidogenesis Testicular OS Hypoxia
Cannabis, Opioids and Anabolic Steroids	Concentration Motility Sperm functions	LH Testosterone	Impaired HPT axis and spermatogenesis
Caffeine	No significant impact confirmed May increase sperm motility May increase SDF	May increase testosterone May decrease LH and FSH	Not determined

PHARMACEUTICALS AND FERTILITY

Drugs

Antibiotics

Penicillin G, ampicillin, cephalotin, spiramycin, gentamycin, neomycin, nitrofurantoin, cotrimoxazole

Dicloxacillin, tylosin, lincomycin, tetracycline, erythromycin, quinolones, neomycin, nitrofurantoin, cotrimoxazole

Antimalarials: quinine and its derivatives

Antischistozomal: niridazole

Antimetabolites/Antimitotics: colchicines, cyclophosphamide Non-steroidal anti-inflammatory drugs, Cox-2 inhibitors

Anti-inflammatory 5-ASA and derivatives:

mesalazine, sulfasalazine

Corticosteroids

Antiandrogens: cyproterone acetate, danazol, finasteride,

ketoconazole, spironolactone

Exogenous testosterone, GnRH analogues

Anabolic steroids

Anti-oestrogens, eg clomiphene citrate

Anti-progestins, emergency contraceptive pills, progesterone-only pills

Local anaesthetics, halothane Antiepileptics: phenytoin

Antipsychotics

Phenothiazine, antidepressants (particularly SSRIs), a blockers Butyrophenones

Antihypertensives

Calcium channel blockers (nifedipine)

Beta blockers, a blockers (prazocin), a agonists (clonidine),thiazide diuretics, hydralazine, methyldopa

H2 blockers: cimetidine, ranitidine

Metoclopramide Methadone Effect on reproductive function

Reversible impairment of spermatogenesis

Reversible impairment of sperm motility

Reversible impairment of sperm motility

Reversible impairment of spermatogenesis and sperm motility

Irreversible arrest of spermatogenesis and azoospermia

Reversible impairment of follicle rupture and ovulation,

impairment of tubal function

Reversible impairment of spermatogenesis and sperm motility

Reversible impairment of sperm concentration and motility Reversible impairment of spermatogenesis and erectile dysfunction

Reversible impairment of spermatogenesis

Reversible impairment of spermatogenesis (up to one year recovery), may induce hypogonadism by affecting pituitary—gonadal axis

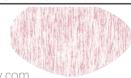
Reversible impairment of endometrial development Impairment of implantation and tubal function

Impair sperm motility

Reversible impairment of sperm motility

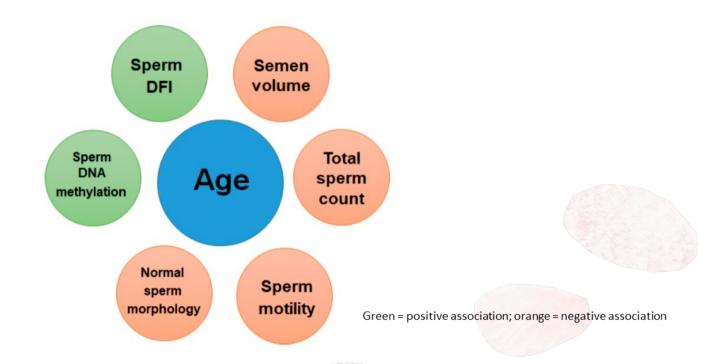
Raise prolactin concentrations and lead to sexual dysfunction Reversible impairment of spermatogenesis and sperm motility

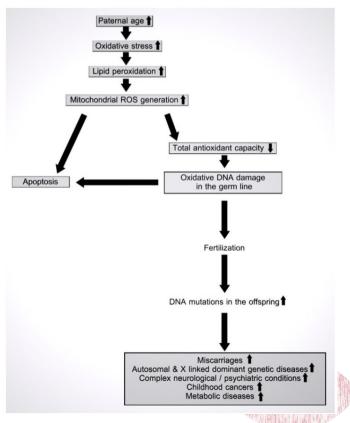
Fertilisation failure Erectile dysfunction


Raise prolactin concentrations and lead to impairment

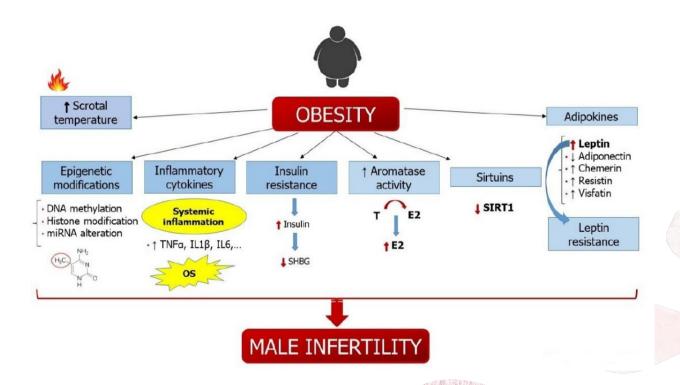
of luteal function, loss of libido and erectile dysfunction Erectile dysfunction

Depress spermatogenesis and sperm motility




AGE AND SPERM HEALTH

ACCUMULATION OF OXIDATIVE DAMAGE AND AGEING

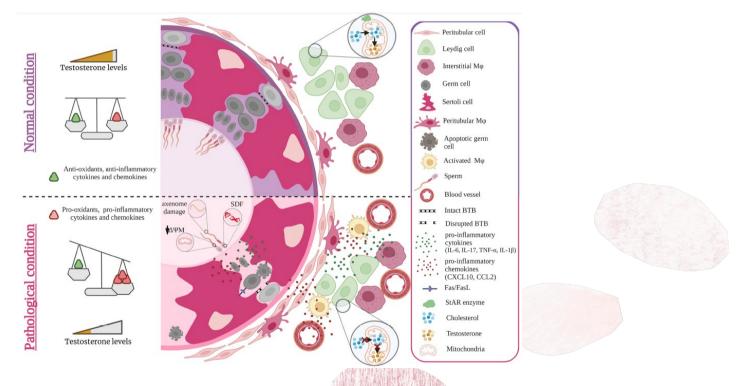


Gunes et al., 2016

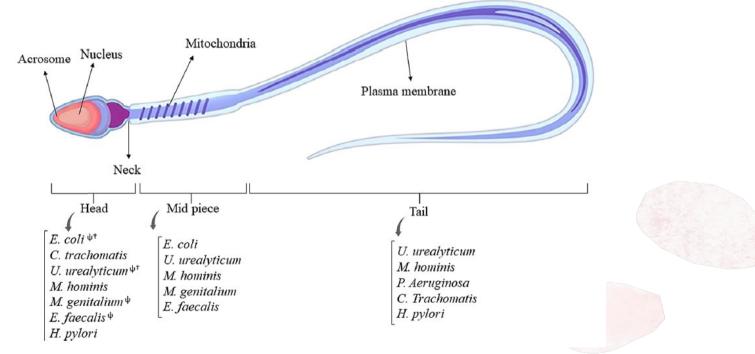
OBESITY AND SPERM HEALTH

ENVIRONMENTAL

- Levine et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update 2017; 23: 646-659.
 - between 1973 and 2011, found an average decline in mean sperm concentration of 1.6% per year, and an overall decline of 59.3%
- Levine et al. Temporal trends in sperm count: a systematic review and meta-regression analysis of samples collected globally in the 20th and 21st centuries. Hum Reprod Update 2022
 - A follow-up to the 2017 meta-analysis sperm count is declining at an accelerated pace - 2.64% post-2000 and an overall fall of 62.3%, decline of ~4.70 million/year



IMMUNOLOGY AND MICROBIOME


INFECTION AND SPERM HEALTH

DIFFERENT PARTS OF SPERM STRUCTURE AND THE IMPACT OF DIFFERENT BACTERIA

 ψ indicates the impact of mentioned bacteria on the neck region and \dagger shows the impact of pathogen on the acrosomal regions

Farsimadan & Motamedifar, 2020

PATHOGENS AND SPERM

Bacteria	Effects on male infertility	Locus of infection
Escherichia coli	Escherichia coli Breakdown of mitochondrial membrane, impairment of acrosome reaction, sperm motility and morphology, decrease in sperm concentration, DNA damage	
Chlamydia trachomatis	Impairment of acrosome reaction, decrease in sperm concentration, sperm motility, viability and morphology, DNA damage	Prostate Epididymis Testis Seminal vesicles Urethra
Ureaplasma urealyticum	Impairment of acrosome reaction, sperm motility and morphology, decrease in sperm concentration, vitality, DNA damage	Prostate Epididymis Urethra
Mycoplasma hominis	Impairment of sperm, motility morphology, decreased sperm concentration and viability, DNA damage	Urethra Prostate
Mycoplasma genitalium	Impairment of sperm motility, decreased sperm concentration and vitality, DNA damage	Urethra Prostate
Neissseria gonorrhoeae	Impairment of Sperm integrity and DNA damage	Prostate Epididymis Testis Seminal vesicles Urethra

VIRUSES AND MALE GUT

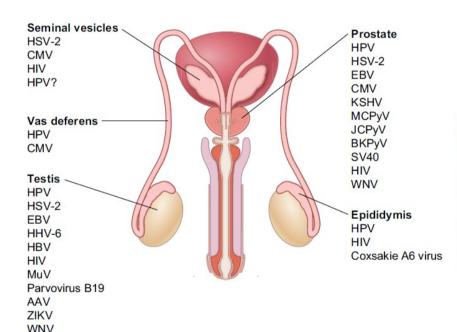


FIGURE 6. Viruses detected in human male genital tract in vivo. The figure recapitulates the viruses detected in human biopsies or secretions of the internal genitalia. HPV, human papillomavirus; HSV, herpes simplex virus; EBV, Epstein-Barr virus; CMV, cytomegalovirus; HHV, human herpesvirus; KSHV, Kaposi sarcoma-associated herpesvirus; HIV, human immunodeficiency virus; HBV, hepatitis B virus; MuV, mumps virus; AAV, adeno-associated virus; ZIKV, Zika virus; WNV, West-Nile virus; EBOV, Ebola virus; MCPyV, Merkel cell polyomavirus; JCPyV, JC polyomavirus; BKPyV, BK polyomavirus; SV4O, simian virus 4O.

Le Tortorec et al., 2020

EBOV

Coxsakie B5 virus

VIRAL INFECTIONS AND TESTICULAR PRETURBATION

A Systemic effect

- · Perturbation of the hypotalamopituitary gland-gonadal axis
- · Increased testis temperature due to fever inducing disruption of spermatogenesis

B Testicular inflammation

- · Infiltration of leukocytes inducing fibrosis
- · Production of cytokines triggering germ cell apoptosis and perturbing cell functions

Brain Hypothalamus Anterior pituitary gland **FSH** LH Blood Testosterone Leukocytes Interstitial tissue Seminiferous Tubules

C Viral interactions with testicular cells

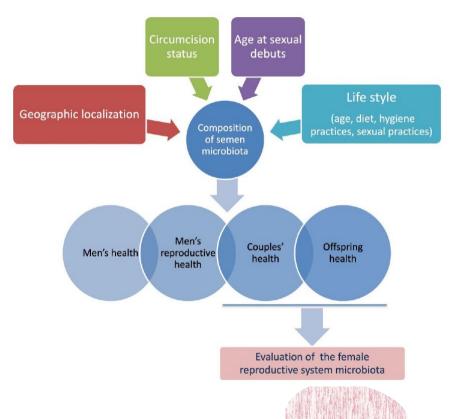
Levdig cells: modification of testosterone secretion, apoptosis ...

Testicular macrophages: impairment of immunosuppression and cross-talk with testicular cells, establishment of viral reservoir ...

Peritubular cells: loss of contractibility for spermatozoa release, alteration of paracrine functions, extracellular matrix modifications ...

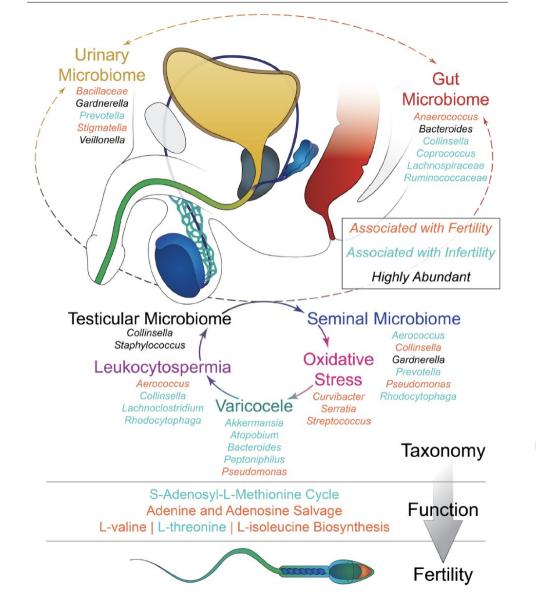
Testicular germ cells: damage, transmission of pathogens through gametes, establishment of viral reservoir ...

Sertoli cells: modification of hormone release. alteration of immunosuppressive properties. impairment of germ cell nursing, breakage of blood-testis barrier (tight junctions), establishment of viral reservoir ...



INDIVIDUAL VARIABILITY

Platinum Priority – Sexual Medicine – Editor's Choice Editorial by Petar Bajic and Alan J. Wolfe on pp. 837–838 of this issue

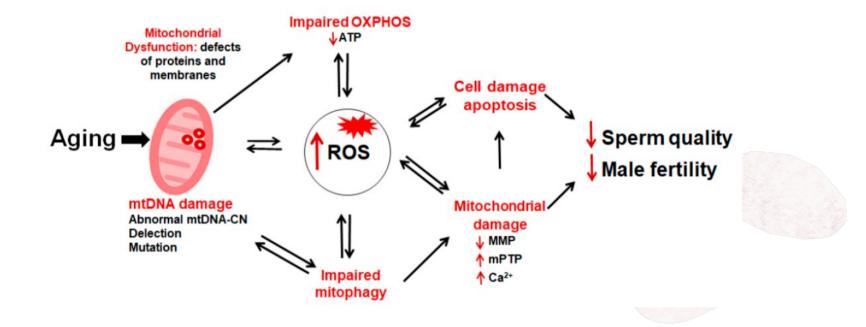

Functional and Taxonomic Dysbiosis of the Gut, Urine, and Semen Microbiomes in Male Infertility

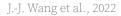
Scott D. Lundy^{a,b,*}, Naseer Sangwan^c, Neel V. Parekh^a, Manesh Kumar Panner Selvam^a, Sajal Gupta^a, Peter McCaffrey^d, Kovi Bessoff^d, Ayin Vala^d, Ashok Agarwal^a, Edmund S. Sabanegh^a, Sarah C. Vij^a, Charis Eng^{b,e}

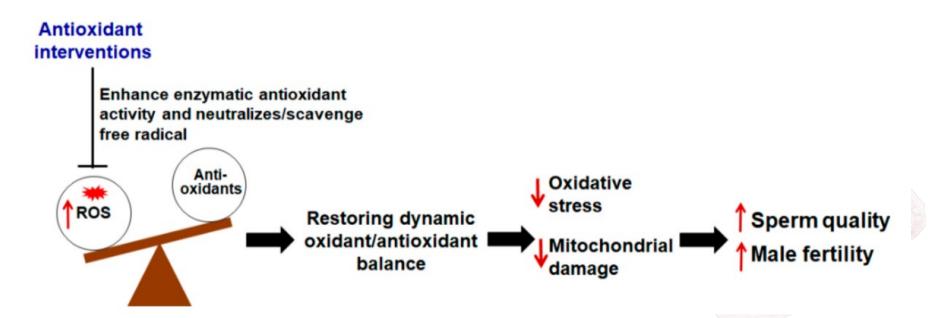
^a Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA; ^b Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; ^c Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA; ^d Vastbiome, Millbrae, CA, USA; ^e Department of Genetics and Genome Sciences and Germline High Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA

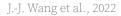
STRATEGIES TO ADDRESS SEMINAL MICROBIOME

- Investigate comprehensively semen, urine, GIT
- Investigate both partners
- Sexual debut influence
- pH variables
- Address infection thoroughly
- Microbiome restoration

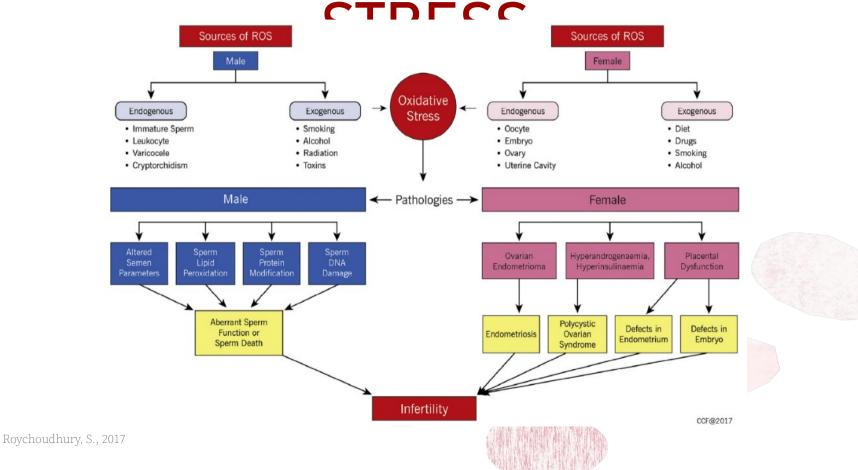


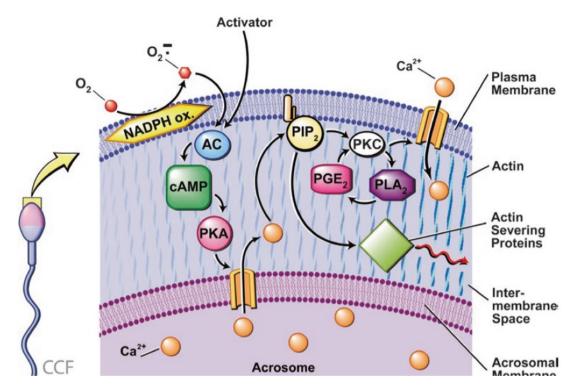

MITOCHONDRIAL HEALTH


MITOCHONDRIAL DYSFUNCTION



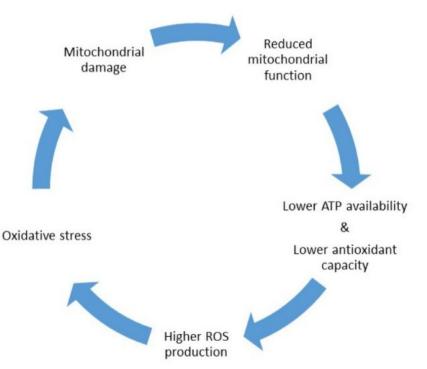
ANTIOXIDANTS





SOURCES OF OXIDATIVE

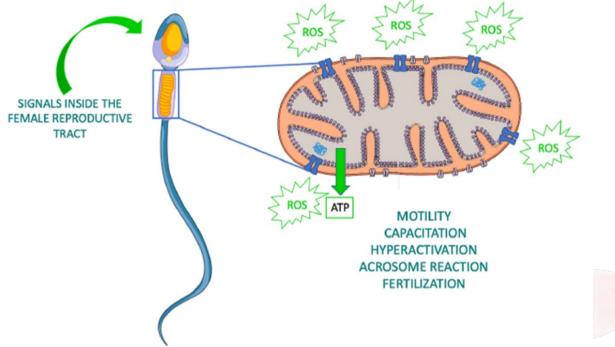
www.naturalhealthfertility.com



SPERM-OOCYTE INTERACTION IS <u>SENSITIVE</u> TO THE REDOX BALANCE

Dutta et al., 2019; Kothari et al., 2010, Henkel & Agarwal, 2020, Dutta et al., 2020; Khosrowbeygi & Zarghami, 2007; Otasevic et al., 2020, Agarwal et al., 2021, Otasevic et al., 2020

AGEING AND THE MITOCHONDRIA



 Vicious cycle between mitochondrial dysfunction and oxidative stress damage

ROLE OF SPERM MITOCHONDRIA IN **HEALTH**

© Leah Hechtman 2023

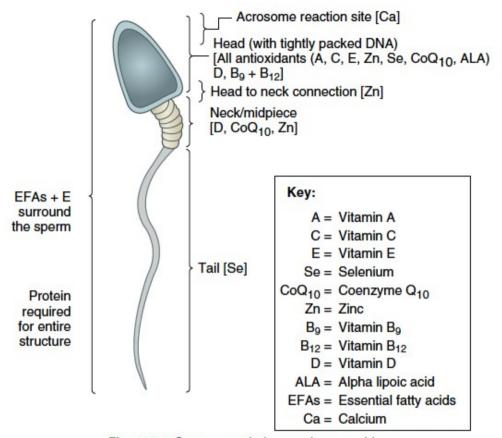


Fig. 185.1 Sperm morphology and composition.

MITOCHONDRIAL DYSREGULATION AND ROS LEAKAGE - EFFECT ON SPERM FUNCTION

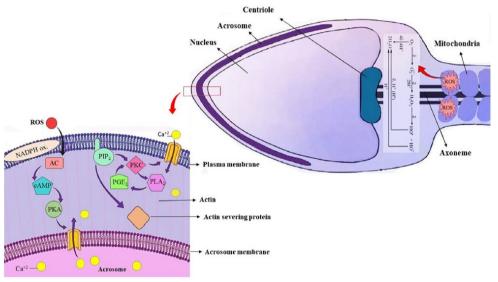
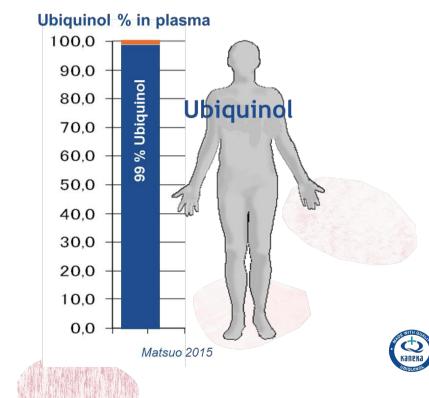


Fig. 2. Mitochondrial dysregulation and ROS leakage from the inner mitochondrial membrane that would affect acrosomal reaction and sperm function negatively. If the ROS production exceeds concentrations of antioxidants in the spermatozoa, oxidative stress occurs. Increases levels of ROS damage the inner and outer mitochondrial membranes and induce premature capacitation that would affect acrosomal morphology and function; hence, impact fertilizing capacity of human spermatozoa significantly. ROS in pathogenic bacteria such as *E. coli, Mycoplasma, Chlamydia, streptococci, staphylococci,* and *Ureaplasma* leads to apoptosis and breakdown of mitochondrial membrane. Both superoxide (O₂⁻) and the hydroxyl radical (OH⁻) are toxic to cells and cause chromosome deletions, dicentrics and sister chromatid exchanges.

MITOCHONDRIAL HEALTH IN MALES


- Mitochondria are essential in several sperm functions and through ATP production, they regulate spermatogenesis, capacitation, induction of acrosome reaction, oocyte fusion, and fertilization
- Several sperm mitochondrial proteins were found to undergo capacitation-dependent tyrosine phosphorylation, indicating that mitochondrial functionality is required for sperm capacitation.
- High mitochondrial membrane potential (MMP) has been suggested to be necessary for acrosin activity, induction of AR and maintenance of chromatin integrity of human sperm
- Several studies proposed that assessment of MMP predicts the sperm fertilization competence both in natural conception and IVF
- Mitochondria represent the major source of ROS and reactive nitrogen species (RNS) in sperm and have a central role in redox signalling that drives fundamental events in the sperm life such as the activation of motility, hyperactivation, capacitation, AR, and fertilization

Ankel-Simons & Cummins, 1996; Rajender et al., 2010; Vertika et al., 2020; Durairajanayagam et al., 2021; Y.-J. Park & Pang, 2021; Shivaji et al., 2009; Gallon et al., 2006; G. Zhang et al., 2019; Marchetti et al., 2012; Sousa et al., 2011; Vončina et al., 2016; Moraes & Meyers, 2018

UBIQUINOL VS UBIQUINONE

 Over 99% of CoQ10 in circulation exists in the UBIQUINOL form in human subjects

UBIQUINOL

The dual nature of CoQ10 as a pro-oxidant and antioxidant makes it a key regulatory element of the oxidative state balance in the cell

Insufficient CoQ10 levels could lead to

- diminished mitochondrial respiration activity
- •which may result in lower ATP production, less ROS counteraction, increased OS, mitochondrial damage, and subsequent mitochondrial dysfunction

www.naturalhealthfertility.com

UBIQUINOL

- This shapes a positive feedback system, in which lower mitochondrial activity may lead to increased OS damage, which subsequently induces mitochondrial impairment and, thus, affects the activity of these organelles.
- Therefore, OS can be caused by, or be the cause of, mitochondrial dysfunction, and insufficient CoQ10 levels may contribute to generate them both.

UBIQUINOL AND MALE FERTILITY VIA MITOCHONDRIA/OS ACTIVITY

- CoQ₁₀ supplementation in males has been investigated and is associated with improved sperm count, motility, density and morphology
- One meta analysis found significant improvement in sperm motility and forward motility, without a significant impact on sperm count, sperm morphology, ejaculate volume or seminal plasma level of CoQ₁₀

www.naturalhealthfertility.com

• 3 RCTs, unknown preparations included

Cirilli et al., 2021; Vishvkarma et al., 2020

UBIQUINOL AND MALE

CCDTII ITV

Study	Participan	RCT	Intervention	Intervention period	Outcome
Alahmar et al. (2021) [37]	Infertile patients with idiopathic oligoas- thenozoospermia; 65 patients	Yes	CoQ10 200 mg/day orally	3 mo	Improved sperm concentration, progressive motility, total motility, seminal fluid CoQ10 concentration, TAC, ROS levels and SDF percentage, and glutathione per- oxidase levels.
Alahmar and Sengupta (2021) [38]	Men with OAT; 70 patients	Yes	CoQ10 200 mg/day	3 mo	Improved sperm concentration, motility, and antioxidant status.
Alahmar (2019) [21]	Men with idiopathic OAT 35 subjects treated with CoQ10 at the dose of 200 mg/day and 30 patients with 400 mg/ day	Yes	CoQ10 200 mg/day, 400 mg/day	3 mo	ldiopathic OAT with a greater improvement shown in men who took 400 mg/day than in those who took 200 mg/day
Cheng et al. (2018) [55]	Idiopathic oligoasthenozoospermia; 262 patients	Yes	L-carnitine 10 mg twice daily and CoQ10 20 mg thrice daily	3 mo	Combination of L-carnitine and CoQ10 can improve the sperm motility and outcome of clinical pregnancy in idiopathic OAT patients.
					Pretreatment with CoQ10 improves ovarian response to stimulation and embryological parameters in young women with poor ovarian reserve in IVF-ICSI cycles.
Tiseo et al. (2017) [35]	Subfertile couples; 211 subjects	No	CoQ10 19.2 mg/day (2.4–247.2 mg/day)	Not specified	Mean dietary intake of CoQ10 in this study was 10-fold lower than the supplemental dose used in clinical tri- als, showing improved sperm motility.
Giacone et al. (2017) [56]	12 Normozoospermic men and 12 asthe- nozoospermic patients	No	Zinc, D-aspartic acid, CoQ10 12 mg	Not specified	Improved sperm motility and increased fertilization rate in IVF/ICSI.
Nadjarzadeh et al. (2014) [51]	Idiopathic OAT; 60 patients	Yes	CoQ10 200 mg/day or placebo	3 mo	Enhanced semen quality and motility.
Gaby et al. (2013) [57]	Idiopathic OAT; 228 patients	Yes	CoQ10/200 mg/day	26 wk	Increased sperm concentration and morphology. Decreased motility and follicle stimulating hormone activity.
Abad et al. (2013) [58]	Asthenteratozoospermic patients; 20 subjects	No	L-carnitine 1,500 mg, CoQ10 20 mg, vitamin C 60 mg, vitamin E 10 mg, vitamin B 9200 µg, vitamin B12 1 µg, zinc 10 mg, selenium 50 µg	3 mo	DNA damage reduced from 28.5% to 20.12%.
Safarinejad (2012) [39]	Idiopathic OAT; 287 patients	No	CoQ10 300 mg twice daily	12 mo	Increased sperm concentration, progressive motility, and normal morphology.
Nadjarzadeh et al. (2011) [49]	Infertile men with idiopathic OAT; 60 patients	Yes	CoQ10 200 mg once daily	19 mo	Improved seminal parameters, lipid peroxidation.
Safarinejad et al. (2009) [59,60]	Infertile men with idiopathic OAT; 212 patients	Yes	CoQ10 300 mg once daily	26 wk	Improved seminal parameters and testicular volume.
Balercia et al. (2009) [61]	Idiopathic asthenozoospermia; 60 patients	No	CoQ10 200 mg/day	3 mo	Administration of CoQ10 increased CoQ10 levels in se- men. It could be effective in enhancing sperm kinetic features in idiopathic asthenozoospermic patients.

CoQ10, coenzyme Q10; RCT, randomized clinical trial; TAC, total antioxidant capacity; ROS, reactive oxygen species; SDF, sperm DNA fragmentation; OAT, oligoasthenoteratozoospermia; IVF, in vitro fertilization; ICSI, intracytoplasmic sperm injection.

PREGNANCY PREDICTION AND COQ10

Received: 29 November 2021 | Revised: 29 December 2021 | Accepted: 11 January 2022

DOI: 10.1111/and.14385

ORIGINAL ARTICLE

Predictors of pregnancy and time to pregnancy in infertile men with idiopathic oligoasthenospermia pre- and post-coenzyme

Q10 therapy

Ahmed T Alahmar^{1,2} | Roozbeh Naemi²

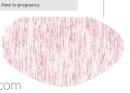
¹College of Medicine, University of Babylon, Hillah, Iraq

²School of Health, Science and Wellbeing Science Centre, Staffordshire University, Stoke-on-Trent, UK

Correspondence

Ahmed T Alahmar, School of Health, Science and Wellbeing, Science Centre, Staffordshire University, Stoke-on-Trent, UK.

Abstract


Different antioxidants including coenzyme Q10 (CoQ10) have been tried to treat idiopathic male infertility (IMI) with variable results. Therefore, this study aimed to determine the clinical and biochemical predictors of pregnancy outcome and time to pregnancy (TTP) in infertile men with idiopathic oligoasthenospermia (OA) pre- and post-CoQ10 therapy. This prospective controlled clinical study included 178 male natients with idionathic OA and 84 fertile men (controls). Patients received 200 mg of oral CoQ10 once daily for 6 months. Demographics, semen parameters, seminal CoQ10 levels, reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), catalase (CAT), glutathione peroxidase (GPx), sperm DNA fragmentation (SDF) and body mass index were measured and compared at baseline and after 6 months. All participants were followed up for another 18 months for pregnancy outcome and TTP. CoQ10 therapy for 6 months significantly improved semen parameters, antioxidant measures and reduced SDF. The pregnancy rate was 24.2% and TTP was 20.52 ± 6.72 months in patients as compared to 95.2% and 5.73 ± 6.65 months in fertile controls. After CoO10 therapy, CoO10 level, sperm concentration, motility and ROS were independent predictors of pregnancy outcome and CoQ10 level, male age, sperm concentration, motility, ROS and GPx were independent predictors of TTP in patients. In conclusion, CoQ10 therapy of 6 months is a potential treatment for men with idiopathic OA. CoQ10 level, male age, semen parameters, ROS and GPx could potentially be used as diagnostic biomarkers for male fertility and predictors for pregnancy outcome and TTP in these patients.

KEYWORD

coenzyme Q10, idiopathic oligoasthenospermia, pregnancy, time to pregnancy

Alkmar, AT; Naemi, R., 2022

Ubiquinol used 200mg/day Best results >6/12

ANTIOXIDANTS

Ubiquinol	Improves count, motility, morphology, vitality, mitochondrial health, DNA, reduces ROS	600mg+/d
Carnitine	Improves count, motility and morphology	25mg+/d
Lycopene	Improves count, motility, reduces ROS	20-25mg+/d
NAC/GSH	Morphology, volume, DNA fragmentation, protamine deficiency, reduces ROS	600-1000mg
Melatonin	Reduced DNA damage, higher viability, motility	2-10mg/d
R-ALA	Viability, motility, count, reduced DNA damage	600mg/d
Vitamin C	Reduces ROS	1-2g/d divided doses
Vitamin E	Reduces ROS	1000-1200mg/d
Zinc	Inhibition of NADPH oxidase	50-150mg/d
Selenium	Count, morphology, motility, vitality, DNA fragmentation	300mcg/d

ZINC

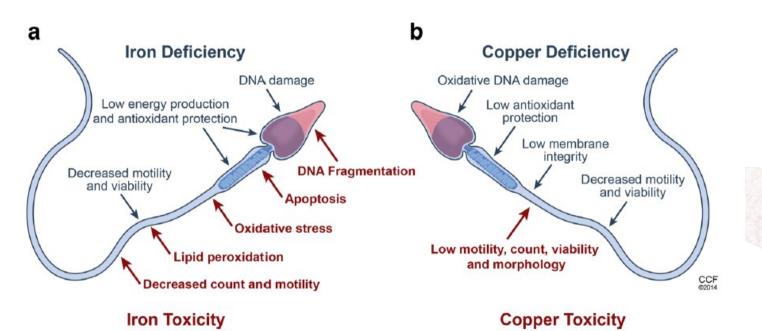
Organ or System/Role	Action	Zn Deficiency	
HPG axis/ hormone production	Inhibition of 5α reductase and affinity to LH receptor	Low serum T, testicular failure, changed sex steroid hormone receptor levels, damaged LH receptors, increase in circulating LH, decrease in T synthesis in Leydig cells	
Antioxidant defense system/ free-radical scavenging	Inhibition of DNases and activity of Cu/Zn SOD	Oxidative damages (lipids, proteins, DNA), increase in LPO, increased MDA in the serum and seminal plasma and reduced levels of SOD, damage to the Leydig cells, apoptosis	
cell physiology/ anti-apoptotic agent	Inhibition of caspases, Bcl-2/Bax ratio increase	DNA fragmentation, apoptosis, decreased population of the Leydig cells, germ cells, cell and tissue death	
Epigenetics/ gene regulation, DNA methylation	Zn expression Zn transport binding proteins, testis-GC specific genes	Reduced reproductive potential, delayed sperm maturation	
Testes/ testes development	participation in spermatogenesis (mitosis of spermatogonia and spermatocyte meiosis)	Retarded genital development, reduced testes weight, changes in the structure of Leydig cells, lower sperm concentration of the ejaculate, hyperviscosity of semen	
Spermatozoa physiology/ cell metabolism	lipid and protein metabolism, oxygen consumption, nucleic acid synthesis, epithelial membrane integrity, chromatin condensation	Abnormal morphology, count, viability, motility of sperm, head-tail attachment problem, inhibition of spermatid differentiation, dysfunction of the zinc finger mo Cys2/His2 of P2 protamines	
Fertilization/ embryonic formation	capacitation, the acrosome reaction	Change in pH, proteasomal activities, transfer of the amino peptidase from prostasomes, lower sperm membrane fluidity, improper fertilization	

 $Abbreviations: deoxyribonucleases \, (DN as es). \\$

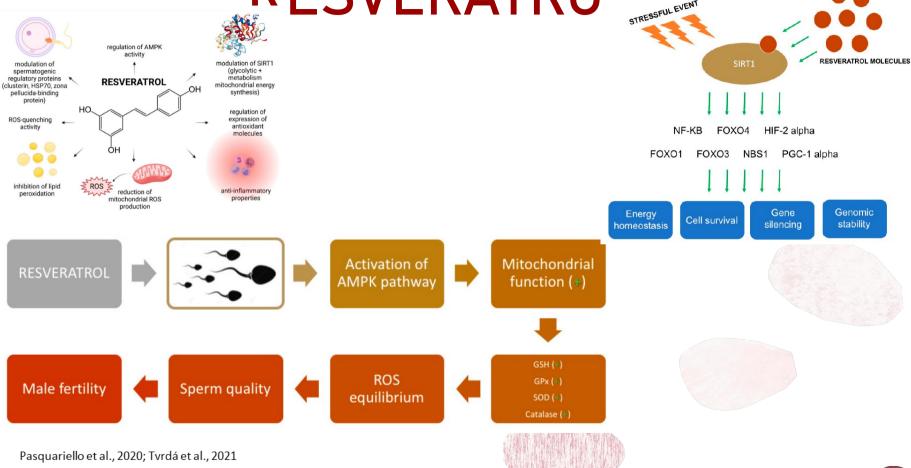
Maciejewski et al., 2022

VITAMIN D

- · Reduced sperm counts
- Altered sperm morphology
- Altered sperm motility
- · Impaired egg binding and acrosome activation



IRON, COPPER AND SPERM HEALTH



Tvrda et al., 2015

RESVERATRO'

METHYLATION

REVIEW published: 22 July 2021

doi: 10.3389/fcell.2021.689624

Epigenetics of Male Infertility: The Role of DNA Methylation

John Charles Rotondo*†, Carmen Lanzillotti†, Chiara Mazziotta†, Mauro Tognon*† and Fernanda Martini*†

OPEN ACCESS

Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy

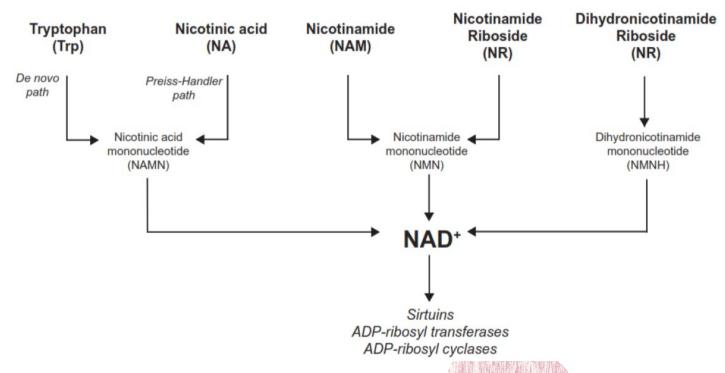
Edited by:

DNA METHYLATION AND SPERMATOGENESIS

- Correct methylation of DNA ensures proper chromatin condensation in the sperm head, enabling sperm maturation and its ability in fertilization and postfertilization events
- Incomplete or abnormal condensation of the sperm chromatin results in damaged DNA, leading to the impairment of egg cell fertilization and/or reduction in pregnancy rates
- Everything he does changes DNA methylation

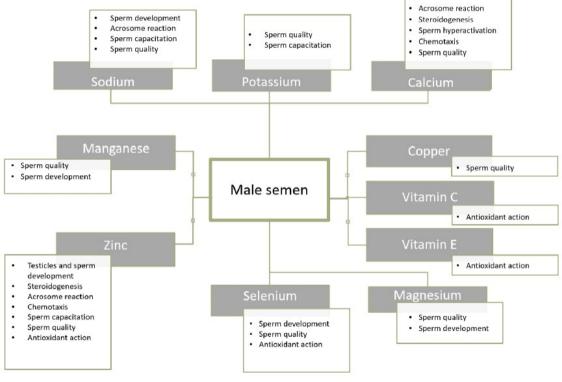
METHYLATION CO FACTORS

- Folate and its derivatives
- Vitamin B12 and products
- Vitamin B3 and NAD precursors (Tryptophan included)
- Methionine
- SAMe
- TMG
- Magnesium
- Zinc
- Vitamin B6
- GSH
- Others



AUTOPHAGY AND REPAIR

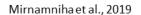
NAD+ PRECURSORS AND CONVERSIONS


Canto, 2022

THERAPEUTIC OPTIONS

- IV NAD+ Only recognized effective means of clinically increasing systemic NAD+ levels
- NAD+ precursors NA, NAM, NMN, NR, and nicotinic acid riboside (NAR), are likely to provide some benefits
- Contrasting evidence indicates that NAD+ precursors are not equal in their beneficial pathways and the effects on their hosts
- The liver makes NAD+ from tryptophan and from orally delivered NR

MICRONUTRIENTS



Skoracka et al., 2020

MICRONUTRIENTS

Elements	Study models	Findings	
- 10.		The state of the s	
Ca deficiency	Human seminal	↓Steroidogenesis; ↓testosterone	
Ca deficiency	Human seminal	↓Sperm acrosome reaction	
Ca deficiency	Human seminal	↓Fertilization process	
Ca deficiency	Human seminal	↓Semen volume, ↓sperm counts; ↓sperm motility	
Na & K deficiency	Human seminal	↓Fertilization rate	
Na & K deficiency	Human seminal	\$Sperm quality	
Na & K deficiency	Human seminal	↓Semen volume	
Na deficiency	Intracellular	\$\$\square\$\$\square\$\$\$\square\$	
K deficiency	Human seminal	↓Testosterone	
Na deficiency	Human seminal	↓Progesterone; ↓sperm acrosome reaction	
Mg deficiency	Human seminal	↓Premature ejaculation	
Mg deficiency	Human seminal	↓Sperm motility	
Zn deficiency	Human seminal	↓Sperm quality	
Zn deficiency	Body	↓Testicular development & function	
Zn deficiency	Human seminal	↓Sexual maturation; ↑hypogonadism; ↑gonad dysfunction; ↓testicular weight;	
		↑Leydig cells damage; ↑testicular atrophy; ↑seminiferous tubules damage	
Zn deficiency	Human seminal	↓Steroidogenesis; ↓testosterone; ↓spermatogenesis	
Zn deficiency	Human seminal	↓Sperm capacitation; ↓acrosome reaction	
Zn deficiency	Human seminal	↓Sperm quality; ↑ROS; ↑oxidative stress; ↑lipid peroxidation; ↓sperm membrane	
		fluidity; \(\sperm-\text{egg} \) interaction; \(\sqrt{\text{fertilization}}; \) \(\sqrt{\text{antioxidant capacity}} \)	
Se deficiency	Dietary intake	↑Oxidative stress; ↓spermatogenesis; ↓sperm quality	
Se deficiency	Human seminal	↓Secretion of testosterone; ↓spermatogenesis	
Se deficiency	Human seminal	↓Sperm count; ↓motility; ↓normal morphology; ↓vitality	
Mn deficiency	Human seminal	↓Sperm quality	
Mn deficiency	Human seminal	↓Seminal fluid volume; ↓sperm normal morphology	
Increased Mn level	Human seminal	↓Sperm motility; ↓sperm count	
Cu deficiency	Human seminal	↓Sperm quality	
Cu deficiency	Human seminal	↑Oxidative stress; ↓SOD activity	
Increased Cu level	Human seminal	↓Sperm motility	

MICRONUTRIENTS

Micronutrient	Description	Effect on male	Recommended dose	Sources
Folic acid	Known as vitamin B9 Essential compound involved in key biochemical processes	 Provides carbon for DNA synthesis and methylation Critical to spermatogenesis 	400 μg/day	Vegetables, fruits, nuts, seafood, eggs, dairy, meat
Calcium	Plays a role in reproductive health Facilitates fertilization	Regulates sperm motility	1 g/day	Dairy products, cabbage, kale, broccoli, almonds, tofu, sardines with bones
Iron	Maintenance of healthy red blood cells Oxygen transport in the blood Immune function Free radical homeostasis	Essential to ejaculate fluidity Maintains sperm pH Sources of ferritin, which protects testicular tissue Developing sperm	30-60 mg/day	Beans, vegetables, cereals, breads
Vitamin B12	Known as cobalamin Cofactor in DNA and fatty acid synthesis Amino acid metabolism	Improves the sperm quality	50 μg/day	Fish, meat, poultry, eggs, milk
Selenium	Selenoprotein Plays a potential role in both female and male fertility	Maintains the spermatozoa integrity and viability Protects them from oxidative damage	60 μg/day	Nuts, seafood, fish, shrimp, muscle meats, cereals, dairy products
Zinc	Plays a key role in fertility for both female and male Has a greater importance for men	Testosterone synthesis Sperm viability Testicle development	20 mg/day	Oysters, eggs, red meat, poultry, seafood, beans, nuts, grains, dairy
Vitamin E	A vital antioxidant in the cell membrane Supports reproductive functions	Supports reproductive function in men Increases sperm quality and quantity	22-30 mg/day	Nuts, seeds, vegetable oils, green leafy vegetables, fortified cereals
Vitamin A	Supports the immune system Protects the gonads, reproductive tissues from oxidative stress	Has influence on sperm morphology and concentration	370 μg/day	Liver, fish oil, eggs, milk, leafy greens, vegetables, tomatoes, fruits
Vitamin C	Aiding in tissue, hormone development Cofactor for enzymes, reducing oxidative damage	Affects the integrity and structure of sperm Promotes an environment	85 mg/day	Citrus, berries, pepper, kiwis, broccoli, brussels sprouts, tomatoes, potatoes

for sperm to thrive

NUTRIENT AND SPERM IMPACT

	Effect on Sperm Parameters			
	Count	Total Motility	Morphology	DNA Damage
ctive ingredients	Zinc	Zinc	Zinc	Zinc
	Selenium	Selenium	NAC	NAC
	Folic acid	Folic acid	Coenzyme Q10	α-Tocopherol
	Vitamin B ₁₂	L-arginine	П	Vitamin C
	Folic acid	L-citrulline	α-Tocopherol	DHA
	L-citrulline	α-Lipoic acid		
	L-arginine	L-camitine		
	α-Lipoic acid	NAC		
	L-carnitine	C-Q10		
	C-Q10	Astaxanthin		
	DAA	DAA		,
	TT	TT		Key:
	Inositol	Inositol		DAA: D-ası TT: Tribulu
	Vitamin C	α -Tocopherol		TT. TTIBUIC
	DHA	Vitamin C		
	Lycopene	Lycopene		
	•	DHA		
			ON THE CHARLES	

Garolla et al., 2021

NUTRIGENOMICS

NUTRIGENOMICS

Dietary component	Gene and SNP	Impact
Ratio of unsaturated to saturated fat	TCFL2: rs7903146 (45,46)	Improper ratio can lead to obesity, insulin resistance, negatively impacting semen quality (47,48)
Omega-3	NOS3: rs1799983 (49); FADS1: rs174547 (50); FADS2: rs2727270, rs498793 (51,52)	Sperm motility; membrane fluidity; sperm concentration (53,54)
Saturated fat	APOA2: rs5082 (55)	Elevated BMI; sperm count, concentration, motility, morphology (56,57)
Sugar	GLUT2: rs5400 (58)	Sperm motility and count (59)
Fiber	TCF7L2: rs12255372 (60)	Low fiber diet can lead to insulin resistance and type 2 diabetes, negatively impacting spermatogenesis, sperm maturation (61)
Gluten	HLA: rs2395182, rs7775228, rs2187668, rs4639334, rs7454108, rs4713586 (62)	Androgen resistance (63); sperm morphology and motility (64)
Caffeine	CYP1A2: rs7662551 (65)	Sperm motility, count and morphology improved at low amounts (66); testosterone levels and sperm volume impaired on high amounts (67)

Vanderhout et al., 2021

NUTRIGENOMICS

Micronutrient	Gene and SNP	Impact
Retinoic Acid	BCMO1: rs11645428 (11)	Meiosis I/II and post meiotic spermatid development (12,13)
Vitamin B ₁₂	FUT2: rs602662 (14)	Sperm count, quality and motility (15)
Vitamin C	GSTT1: insertion or deletion (16)	Semen volume, concentration, sperm count, morphology and motility (17)
Vitamin D	CYP2R1: rs10741657 (18); GC: rs2282679 (18,19)	Sperm motility and morphology (20); sex hormone binding globulin (SHBG) (21)
Vitamin E	CYP4F2: rs2108622 (22); SCARB1: rs11057830 (22); APOA5: rs12272004 (22)	Acrosome reaction (23); sperm morphology (24)
Folate	MTHFR: rs1801133 (25)	Sperm density and morphology (26)
Choline	CHDH: rs12676 (27,28); PEMT: rs4646343 (29); PEMT: rs7946 (29)	Sperm motility (27,28)
Betaine	CHDH +432: rs12676 (30); PEMT -744: rs12325817 (30)	Spermatogenesis (31)
Iron	TMPRSS6: rs4820268 (32); TFR2: rs7385804 (33); HFE: rs1800562 (34); SLC17A1: rs17342717 (35); HFE: rs1799945 (34); TF: rs3811647 (34)	Spermatogenesis (36); sperm volume, density, motility and morphology (37); excess leads to oxidative DNA damage (38)
Calcium	GC: rs7041 (39); GC: rs4588 (39)	Sperm maturation (40), motility (41), morphology (42), and overall function (43,44)

Vanderhout et al., 2021

