Interpreting and Applying GI360™ Test Data: The Three Stages of GI Dysfunction

Presented by

Dan Kalish, DC

and Julia Malkowski, ND, DC

Skill Acquisition and Overview

1. Show You...

- How to interpret stool test results and...
- assign patients to one of the three stages.

2. Your Turn...

Practice interpreting the results of a stool test (using the handouts provided).

3. Explain how...

To implement lifestyle and supplement modalities based on lab test results.

But first, a quick Preface

Why perform GI testing in the first place?

GI dysfunction occurs with or without GI symptoms

 If we are treating the "underlying cause" then why do we all only run GI tests on GI symptomatic patients?

 We should run GI test on every new patient as part of a basic functional medicine workup

3 Stages of GI Dysfunction

How it Happens: The 3 Stages of GI Dysfunction

Stage 1

 Stress and poor diet cumulative effect, weakening of the adrenals and microbiome diversity

Stage 2

• GI organ function compromised, less HCl production, less enzyme and bile production, leaky gut starts with damage to gut lining and lowering of gut immunity (SIgA)

Stage 3

• Pathogens acquired, parasites, bacteria or yeast overgrowth

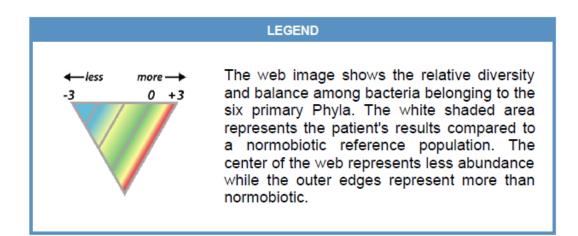
A Disturbed Microbiome

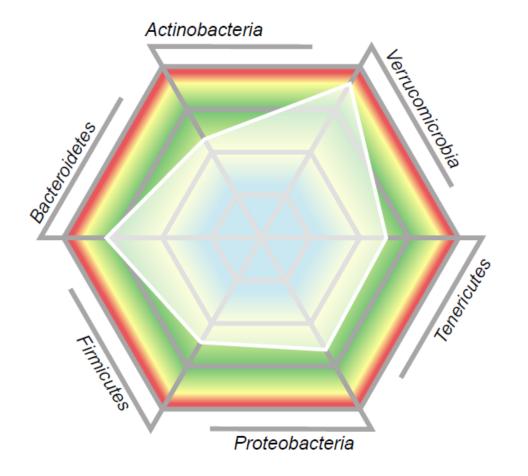
Low SCFA

Commensal bacteria imbalance

Low short chain fatty acids (esp. butyrate)

Short Chain Fatty Acids	Result	Unit	L	WRI	н	Reference Interval
% Acetate [‡]	66			<u> </u>		50-72
% Propionate [‡]	16			<u> </u>		11 – 25
% Butyrate [‡]	15			<u> </u>		11 – 32
% Valerate [‡]	4.2			<u> </u>		0.8-5.0
Butyrate [‡]	0.62	mg/mL	Δ			0.8-4.0
Total SCFA's‡	4.3	mg/mL				5.0 – 16.0




Microbiome Assessment Summary

How to Identify Stage 1

Microbiome Abundance and Diversity Summary

The abundance and diversity of gastrointestinal bacteria provide an indication of gastrointestinal health, and gut microbial imbalances can contribute to dysbiosis and other chronic disease states. The GI360 $^{\rm TM}$ Microbiome Profile is a gut microbiota DNA analysis tool that identifies and characterizes more than 45 targeted analytes across six Phyla using PCR and compares the patient results to a characterized normobiotic reference population. The web chart illustrates the degree to which an individual's microbiome profile deviates from normobiosis.

GI Organs Impacted

Evidence of poor digestion/absorption

Degradation of immune response

Markers of Digestion

Digestion Absorption	Result	Unit	L	WRI	Н	Reference Interval
Elastase	83	μg/mL				> 200
Fat Stain	Few			A		None-Few
Carbohydrates [†]	Negative			A		Negative

Markers of Immune Function

Inflammation	Result	Units	L	WRI	Н	Reference Interval
Lactoferrin	8.1	μg/mL				< 7.3
Calprotectin*	59	μg/g				≤ 50
Lysozyme*	452	ng/mL				≤ 600
Immunology	Result	Units	L	WRI	Н	Reference Interval
Secretory IgA*	48	mg/dL				51 – 204

GI Pathogens

- Infection
 - Weakened microbiome and organ dysfunction
 - Pre-existing infection but flare up occurred due to stress
 - New infection acquired due to stress physiology and weakened immune response
- Bacterial, parasitic or yeast dominate, requires killing of bugs

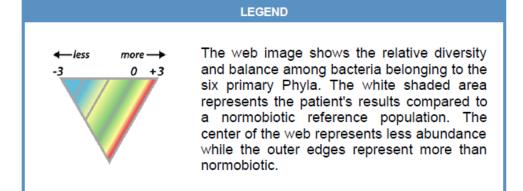
Markers of Dysbiosis and Infection

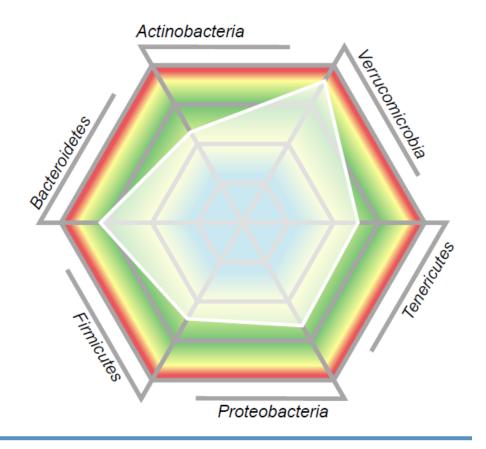
How to Identify Stage 3

Parasites	Result	
Cryptosporidium (C. parvum and C. hominis)	Positive	
Entamoeba histolytica	Negative	
Giardia duodenalis (AKA intestinalis & lamblia)	Positive	

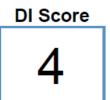
Viruses, pathogenic bacteria, parasites, protozoa, worms, yeast, etc.

A Summary of the 3 Stages – What to look for

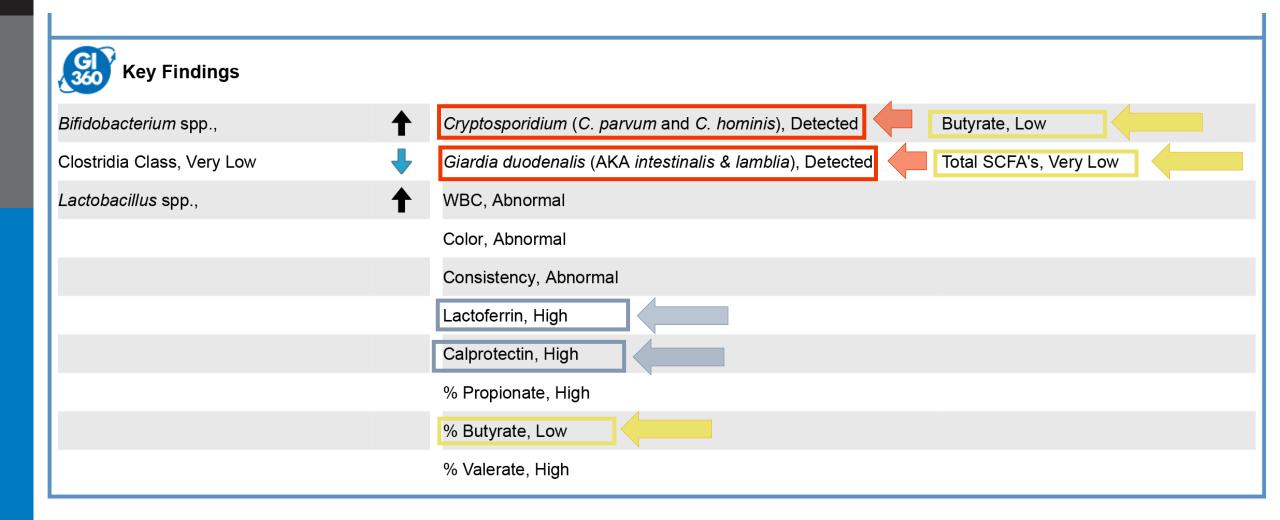

1 Stage	 Evidence of disturbed commensal microbiota Low short chain fatty acids
2 Stage	 Evidence of poor digestion/absorption Elastase, Fat stain, Carbohydrates Degradation of immune response Lactoferrin, Calprotectin, Lysozyme, slgA
3 Stage	 Evidence of parasites, dysbiotic bacteria and/or yeast



Microbiome Abundance and Diversity Summary


The abundance and diversity of gastrointestinal bacteria provide an indication of gastrointestinal health, and gut microbial imbalances can contribute to dysbiosis and other chronic disease states. The GI360 $^{\rm TM}$ Microbiome Profile is a gut microbiota DNA analysis tool that identifies and characterizes more than 45 targeted analytes across six Phyla using PCR and compares the patient results to a characterized normobiotic reference population. The web chart illustrates the degree to which an individual's microbiome profile deviates from normobiosis.

Dysbiosis Index


The Dysbiosis Index (DI) is a calculation with scores from 1 to 5 based on the overall bacterial abundance and profile within the patient's sample as compared to a reference population. Values above 2 indicate a microbiota profile that differs from the defined normobiotic reference population (i.e., dysbiosis). The higher the DI above 2, the more the sample is considered to deviate from normobiosis.

Key Findings // Practice Test // Stage 1

Short Chain Fatty Acids‡	Result	Units	L		WRI	Н	Reference Interval
% Acetate	59.7	%				7	40 – 75
% Propionate	26.5	%	t e				9 – 29
% Butyrate	10.2	%		\triangle			9-37
% Valerate	6.5	%					0.5 - 7
Butyrate	0.74	mg/mL					0.8 - 4.8
Total SCFA's	3	mg/mL					4 – 18

Key Findings // Practice Test // Stage 2

Inflammation	Result	Units	L	WRI	Н	Reference Interval
Lactoferrin	8.1	μg/mL			<u> </u>	< 7.3
Calprotectin*	59	μg/g			A	≤ 50
Lysozyme*	452	ng/mL		<u> </u>		≤ 600
Immunology	Result	Units	L	WRI	Н	Reference Interval
Secretory IgA*	48	mg/dL				51 – 204

^{*}This test was developed and its performance characteristics determined by Doctor's Data Laboratories in a manner consistent with CLIA requirements. The U. S. Food and Drug Administration (FDA) has not approve or cleared this test; however, FDA clearance is not currently required for clinical use. The results are not intended to be used as a sole means for clinical diagnosis or patient management decisions.

Key Findings // Practice Test // Stage 3

Parasites	Result	
Cryptosporidium (C. parvum and C. hominis)	Positive	
Entamoeba histolytica	Negative	
Giardia duodenalis (AKA intestinalis & lamblia)	Positive	

^{*}This test was developed and its performance characteristics determined by Doctor's Data Laboratories in a manner consistent with CLIA requirements. The U. S. Food and Drug Administration (FDA) has not approve or cleared this test; however, FDA clearance is not currently required for clinical use. The results are not intended to be used as a sole means for clinical diagnosis or patient management decisions.

Summary of Key Findings

Low butyrate Low short chain fatty acids Stage High Lactoferrin High Calprotectin Low slgA Stage Giardia duodenalis (AKA intestinalis & lamblia) Cryptosporidum (C. parvumand C. hominis) Stage

Stage-Specific Recommendations

Stage 1 – Microbiome

Eat to encourage commensal bacterial growth and SCFA production (fiber, polyphenols, fermented foods).

- Prebiotics capsules or powders
 - Polyphenol and prebiotics on their own or in combinations to boost bifidobacteria and microbiome diversity‡
- Probiotics
 - To promote GI and immune health across all ages‡
- Butyrate
 - Short chain fatty acid liquid that promotes gut barrier integrity, cytokine balance, bowel motility, and abdominal comfort‡

Stage 2 – Organ Function

Eat to stimulate normal digestive processes: chew food properly, avoid liquid with meals and relax before and after meals.

- Betaine HCl Pepsin
 - Promotes healthy digestive function and may help stimulate digestive function and absorb nutrients[‡]
- Digestive Enzymes
 - Digestive enzymes to support protein, carbohydrate, fat, fiber digestion[‡]

- GI Repair powders
 - Glutamine based powders to enhance immune cell function and support GI barrier integrity[‡]
- GB Support
 - Promote healthy gallbladder function and lipid utilization in addition to general digestive function[‡]

Stage 3 – Microbial balance

Consider introducing a low FODMAP or gluten-free diet.

- Anti-Microbial Combination Products
 - Combination of phytonutrients designed to support healthy gastrointestinal tract function and microbial balance
- Anti-Microbial Single Ingredient products
 - Options include oregano, artemisia, berberine, grapefruit seed extract, morinda, black walnut

So what Protocol should you use?

Protocol 1 // Protocol 2 // Protocol 3

It depends...

- Practitioners experience
- Severity of patient symptoms
- Cost
- Patient preference
- Time

GI Masterclass

- Develop your confidence interpreting GI lab reports.
- Learn how to design and implement supplement protocols for consistent results.
- Expand your patient communication skills.
- Walk through sample cases.

Special Offer for Live Attendees: FREE kalishinstitute.com/Gl Coupon code: GI2020

(Limited time offer. Normal price \$199)

Thank You

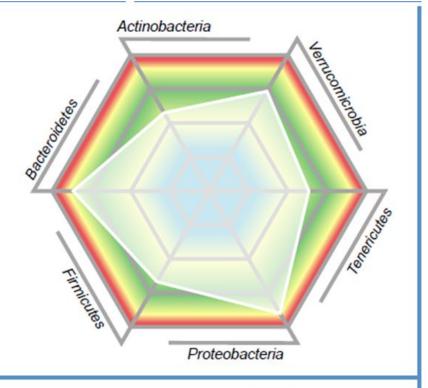
Daniel Kalish, DC
Founder of The Kalish Institute

Cases

• Previously overweight depressed in the care of a psychiatrist

Within last 3 months switched to less processed diet and lost 20lbs.

• Treated with three rounds of antibiotics for H. pylori


Microbiome Abundance and Diversity Summary

The abundance and diversity of gastrointestinal bacteria provide an indication of gastrointestinal health, and gut microbial imbalances can contribute to dysbiosis and other chronic disease states. The GI360™ Microbiome Profile is a gut microbiota DNA analysis tool that identifies and characterizes more than 45 targeted analytes across six Phyla using PCR and compares the patient results to a characterized normobiotic reference population. The web chart illustrates the degree to which an individual's microbiome profile deviates from normobiosis.

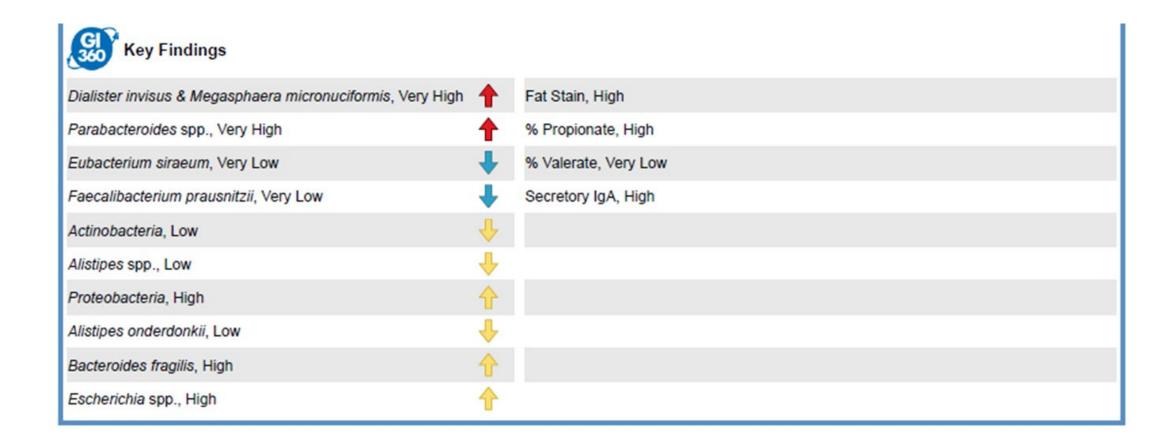
-3 more --> -3 0 +3

LEGEND

The web image shows the relative diversity and balance among bacteria belonging to the six primary Phyla. The white shaded area represents the patient's results compared to a normobiotic reference population. The center of the web represents less abundance while the outer edges represent more than normobiotic.

Dysbiosis Index

The Dysbiosis Index (DI) is a calculation with scores from 1 to 5 based on the overall bacterial abundance and profile within the patient's sample as compared to a reference population. Values above 2 indicate a microbiota profile that differs from the defined normobiotic reference population (i.e., dysbiosis). The higher the DI above 2, the more the sample is considered to deviate from normobiosis.

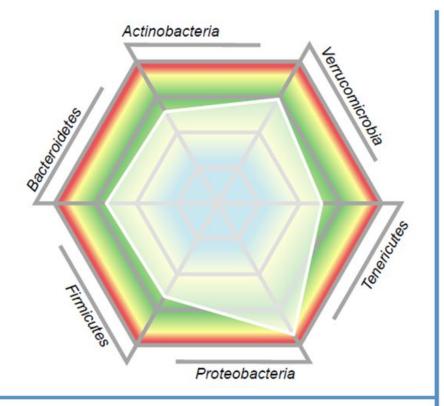


5

Digestion Absorption	Result	Unit	L	WRI	Н	Reference Interval
Elastase	>500	μg/mL				> 200
Fat Stain	Moderate				Δ	None – Few
Carbohydrates†	Negative			A		Negative
Inflammation	Result	Unit	L	WRI	н	Reference Interval
Lactoferrin	1.1	μg/mL				< 7.3
Lysozyme*	248	ng/mL		A		< 500
Calprotectin*	<10	μg/g				< 50
Immunology	Result	Unit	L	WRI	н	Reference Interval
Secretory IgA*	329	mg/dL			Δ	30 – 275
Short Chain Fatty Acids‡	Result	Unit	L	WRI	н	Reference Interval
% Acetate	61	%				50 – 72
% Propionate	26	%			Δ	11 – 25
% Butyrate	13	%		_		11 – 32
% Valerate	0.2	%				0.8-5.0
Butyrate	1.6	mg/mL				0.8-4.0
Total SCFA's	12	mg/mL		A		5.0 – 16.0
Intestinal Health Markers	Result	Unit	L	WRI	н	Reference Interval
рН	5.8					5.8-7.0
Occult Blood	Negative					Negative

 Client presents with ongoing arthralgia, underactive thyroid and alternating IBS symptoms, which has worsened considerably since a trip to Hong Kong in Oct 2019.

 She's taking pain medications (morphine x 2, gabapentin, NSAIDs, paracetamol) having had a bike accident June 2019

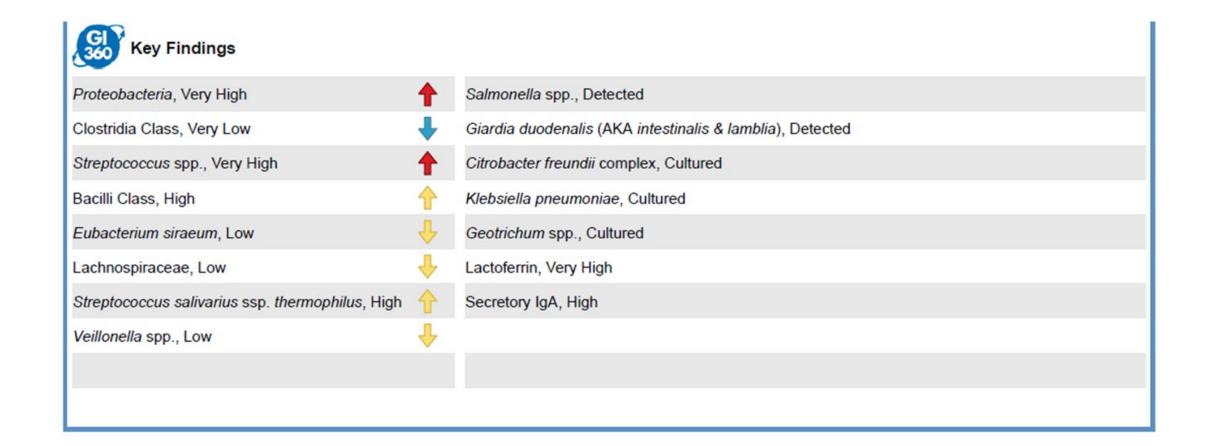

Microbiome Abundance and Diversity Summary

The abundance and diversity of gastrointestinal bacteria provide an indication of gastrointestinal health, and gut microbial imbalances can contribute to dysbiosis and other chronic disease states. The Gl360™ Microbiome Profile is a gut microbiota DNA analysis tool that identifies and characterizes more than 45 targeted analytes across six Phyla using PCR and compares the patient results to a characterized normobiotic reference population. The web chart illustrates the degree to which an individual's microbiome profile deviates from normobiosis.

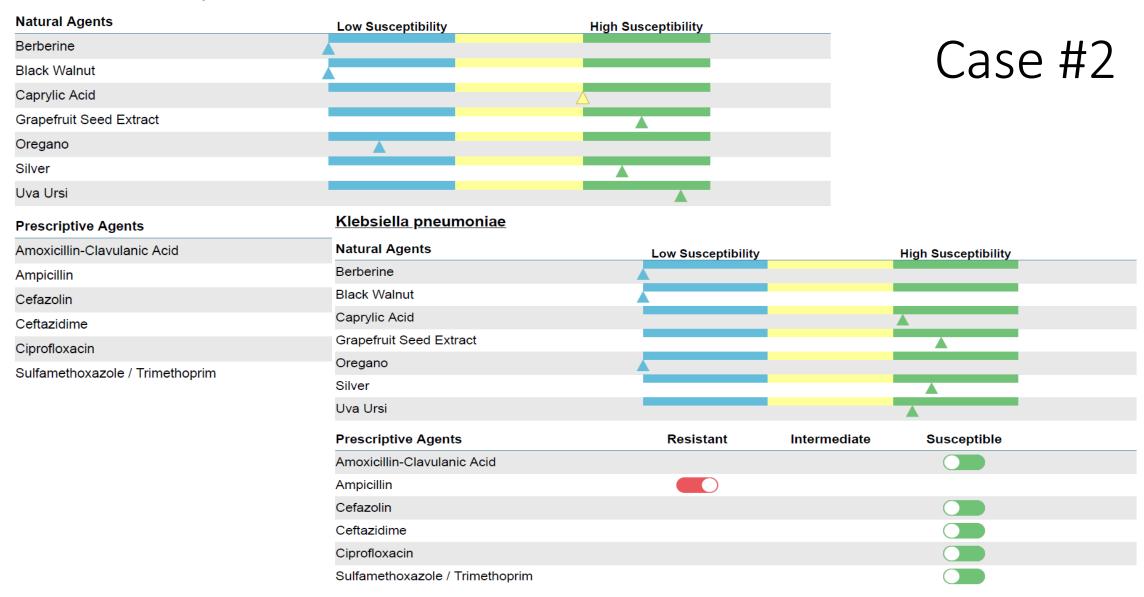
LEGEND

-less more → -3 0 +3

The web image shows the relative diversity and balance among bacteria belonging to the six primary Phyla. The white shaded area represents the patient's results compared to a normobiotic reference population. The center of the web represents less abundance while the outer edges represent more than normobiotic.


Dysbiosis Index

The Dysbiosis Index (DI) is a calculation with scores from 1 to 5 based on the overall bacterial abundance and profile within the patient's sample as compared to a reference population. Values above 2 indicate a microbiota profile that differs from the defined normobiotic reference population (i.e., dysbiosis). The higher the DI above 2, the more the sample is considered to deviate from normobiosis.

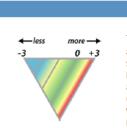

Viruses	Result	
Adenovirus F40/41	Negative	
Norovirus GI/GII	Negative	
Rotavirus A	Negative	
Pathogenic Bacteria	Result	
Campylobacter (C. jejuni, C. coli and C. lari)	Negative	
Clostridium difficile (Toxin A/B)	Negative	
Escherichia coli O157	Negative	
Enterotoxigenic Escherichia coli (ETEC) It/st	Negative	
Salmonella spp.	Positive	
Shiga-like toxin-producing Escherichia coli (STEC) stx1/stx2	Negative	
Shigella (S. boydii, S. sonnei, S. flexneri & S. dysenteriae)	Negative	
Vibrio cholerae	Negative	
Parasites	Result	
Cryptosporidium (C. parvum and C. hominis)	Negative	
Entamoeba histolytica	Negative	
Giardia duodenalis (AKA intestinalis & lamblia)	Positive	

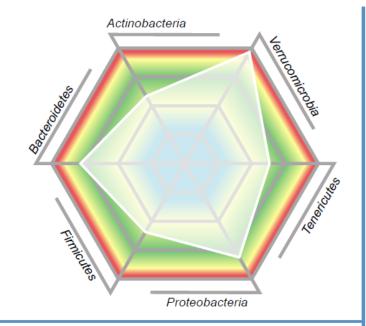
Pathogenic Bacteria	Result	NG	1+	2+	3+	4+	Reference Interval
Aeromonas spp.	NG	A					No Growth
Edwardsiella tarda	NG						No Growth
Plesiomonas shigelloides	NG						No Growth
Salmonella group	NG						No Growth
Shigella group	NG						No Growth
Vibrio cholerae	NG	A					No Growth
Vibrio spp.	NG	A					No Growth
Yersinia spp.	NG	A					No Growth
Imbalance Bacteria	Result	NG	1+	2+	3+	4+	Reference Interval
Imbalance Bacteria Hafnia alvei	Result 4+	NG	1+	2+	3+	4+	Reference Interval No Growth
		NG	1+	2+	3+	4+ 	
Hafnia alvei	4+	NG NG	1+		3+	4+ 	No Growth
Hafnia alvei Proteus vulgaris group	4+ 2+			Δ		Δ	No Growth
Hafnia alvei Proteus vulgaris group Dysbiotic Bacteria	4+ 2+ Result			Δ		Δ	No Growth No Growth Reference Interval
Hafnia alvei Proteus vulgaris group Dysbiotic Bacteria Citrobacter freundii complex	4+ 2+ Result 4+			Δ		Δ	No Growth No Growth Reference Interval No Growth

Citrobacter freundii complex

- Pt on Ketogenic diet
- Pt is WNL weight prior to gestation
- No GI history
- Develops gestational Type II DM

Avoiding all carbs in an effort to destroy dyslglycemia




Microbiome Abundance and Diversity Summary

The abundance and diversity of gastrointestinal bacteria provide an indication of gastrointestinal health, and gut microbial imbalances can contribute to dysbiosis and other chronic disease states. The Gl360™ Microbiome Profile is a gut microbiota DNA analysis tool that identifies and characterizes more than 45 targeted analytes across six Phyla using PCR and compares the patient results to a characterized normobiotic reference population. The web chart illustrates the degree to which an individual's microbiome profile deviates from normobiosis.

LEGEND

The web image shows the relative diversity and balance among bacteria belonging to the six primary Phyla. The white shaded area represents the patient's results compared to a normobiotic reference population. The center of the web represents less abundance while the outer edges represent more than normobiotic.

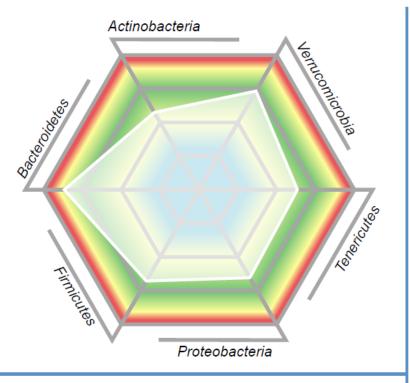
Dysbiosis Index

The Dysbiosis Index (DI) is a calculation with scores from 1 to 5 based on the overall bacterial abundance and profile within the patient's sample as compared to a reference population. Values above 2 indicate a microbiota profile that differs from the defined normobiotic reference population (i.e., dysbiosis). The higher the DI above 2, the more the sample is considered to deviate from normobiosis.

Digestion Absorption	Result	Unit	L	WRI	н	Reference Interval
Elastase	286	μg/mL		A		> 200
Fat Stain	None					None – Few
Carbohydrates [†]	Negative			A		Negative
Inflammation	Result	Unit	L	WRI	н	Reference Interval
Lactoferrin	2.3	μg/mL				< 7.3
Lysozyme*	113	ng/mL				≤ 500
Calprotectin	<10	μg/g				≤ 50
Immunology	Result	Unit	L	WRI	н	Reference Interval
Secretory IgA*	28.2	mg/dL		7		30 – 275
Short Chain Fatty Acids‡	Result	Unit	L	WRI	Н	Reference Interval
% Acetate	53	%		A		50 – 72
% Propionate	26	%			Δ	11 – 25
% Butyrate	17	%		A		11 – 32
% Valerate	4.1	%				0.8-5.0
Butyrate	0.59	mg/mL	Δ			0.8-4.0
Total SCFA's	3.4	mg/mL				5.0 – 16.0
Intestinal Health Markers	Result	Unit	L	WRI	Н	Reference Interval
рН	7.1				Δ	5.8 – 7.0
β-glucuronidase	298	U/L		A		100 – 1200
Occult Blood	Negative			A		Negative

Client presents with GI distress

• Pt is on self prescribed carnivore diet to avoid plant reactions


Microbiome Abundance and Diversity Summary

The abundance and diversity of gastrointestinal bacteria provide an indication of gastrointestinal health, and gut microbial imbalances can contribute to dysbiosis and other chronic disease states. The GI360™ Microbiome Profile is a gut microbiota DNA analysis tool that identifies and characterizes more than 45 targeted analytes across six Phyla using PCR and compares the patient results to a characterized normobiotic reference population. The web chart illustrates the degree to which an individual's microbiome profile deviates from normobiosis.

-less more → -3 0 +3

LEGEND

The web image shows the relative diversity and balance among bacteria belonging to the six primary Phyla. The white shaded area represents the patient's results compared to a normobiotic reference population. The center of the web represents less abundance while the outer edges represent more than normobiotic.

Dysbiosis Index

The Dysbiosis Index (DI) is a calculation with scores from 1 to 5 based on the overall bacterial abundance and profile within the patient's sample as compared to a reference population. Values above 2 indicate a microbiota profile that differs from the defined normobiotic reference population (i.e., dysbiosis). The higher the DI above 2, the more the sample is considered to deviate from normobiosis.

Case #4 Bacteroides stercoris

Bacteroidetes	Result	-3	-2	-1	0	+1	+2	+3	Reference Interval
Alistipes spp.	0				A				-1 to +1
Alistipes onderdonkii	0				A				-1 to +1
Bacteroides fragilis	0				A				0 to +1
Bacteroides spp. & Prevotella spp.	+1					A			-1 to +1
Bacteroides stercoris	+3							A	0 to +1
Bacteroides zoogleoformans	0				A				0 to +1
Parabacteroides johnsonii	0				A				0 to +1
Parabacteroides spp.	0				A				-1 to +1

Digestion Absorption	Result	Unit	L	WRI	Н	Reference Interval
Elastase	239	μg/mL		A		>200
Fat Stain	None					None – Few
Carbohydrates [†]	Negative			A		Negative
Inflammation	Result	Unit	L	WRI	н	Reference Interval
Lactoferrin	5.3	μg/mL		A		<7.3
Lysozyme*	368	ng/mL		A		≤500
Calprotectin	<10	μg/g				≤50
Immunology	Result	Unit	L	WRI	н	Reference Interval
Secretory IgA*	80.0	mg/dL		A		30-275
Short Chain Fatty Acids	Result	Unit	L	WRI	н	Reference Interval
% Acetate [‡]	66	%				50-72
% Propionate [‡]	16	%		A		11 – 25
% Butyrate [‡]	15	%		A		11 – 32
% Valerate‡	4.2	%				0.8-5.0
Butyrate [‡]	0.62	mg/mL	Δ			0.8-4.0
Total SCFA's‡	4.3	mg/mL	Δ			5.0 – 16.0
Intestinal Health Markers	Result	Unit	L	WRI	Н	Reference Interval
рН	7.0					5.8-7.0
β-glucuronidase*	424	U/L		A		100 – 1200
Occult Blood	Positive				A	Negative

Thank you for watching

For more information:

doctorsdata.com GI360.com

800.323.2784

info@doctorsdata.com